
On a discretised spectral approximation in neutron transport theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 1341

(http://iopscience.iop.org/0305-4470/21/6/011)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 12:34

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 21 (1988) 1341-1355. Printed in the U K  

On a discretised spectral approximation in 
neutron transport theory 

A Sengupta and C K Venkatesan 
Nuclear Engineering and Technology Programme, Indian Institute of Technology, 
Kanpur 208016, India 

Received 14 July 1987, in final form 4 November 1987 

Abstract. An approximation method significantly different from existing ones is developed 
in this paper for the one-speed neutron transport equation. The theory is based on the 
singular eigenfunction method, and is founded on the new concepts of ( i )  a rational 
function approximation of the Case singular eigenfunction and (ii) discretisation of the 
continuous spectrum ( 0 , l )  of the half-range transport problem using the roots of a set of 
polynomials orthogonal in (0, 1 ) with respect to a simple closed-form accurate approxima- 
tion of the half-range weight function W ( p ) .  A sample numerical example is given to 
illustrate the application of the theory. 

1. Introduction 

The neutron transport equation in one-dimensional plane geometry is an interesting 
representative of a class of linear equations in mathematical physics where the 
associated eigenspectrum is the union of discrete and continuous parts. The general 
solution of such an  equation is therefore written as the sum of an  integral over the 
continuous spectrum and a sum over the discrete. Among the exact methods to obtain 
this representation for the transport equation, that of Case [ 13 (the Weiner-Hopf 
approach is an  equivalent alternate decomposition) is an expansion method in terms 
of a complete set of spectral functions of the inverse transport operator, where one 
member of the complete family is a singular distribution or generalised function. The 
solution procedure is based on Muskhelishvili’s treatment of singular equations of 
Cauchy type, which is derived from the theory of analytic functions of a complex 
variable. 

Though the singular eigenfunction method is an  elegant formalism, it can be 
considered to be a formal method as the exact solution it produces is, in general, 
unsuited for numerical calculations. This is due to the appearance of a ‘transient 
integral’ term involving the singular eigenfunction and expansion coefficients that 
satisfy singular integral equations. This means that the resulting ‘transient integral’ 
cannot be expressed in a closed form, a feature that we shall refer to as the ‘transient 
integral problem’ of the neutron transport equation. Of the two noteworthy recent 
developments that circumvent the transient integral problem without actually solving 
it, the FN method [2] projects Case’s half-range solution onto a subspace of the 
full-range problem and uses numerical methods to solve a resulting Fredholm integral 
equation. This conceptually simple method has been utilised by Siewert and coworkers 
[2] for a variety of test problems to give very accurate numerical results. The less 
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investigated TP, method [3], on the other hand, replaces the transient integral by a 
sum and obtains the superposition coefficients of the solution by generalising the 
Marshak boundary conditions so as to obtain the exact extrapolated endpoint in the 
standard Milne problem. The series replacement of the transient integral is, as usual, 
in terms of classical orthogonal polynomials and it needs to be pointed out that such 
an expansion of singular distributions is only a formal represntation of the generalised 
function (cF)-in the case of the delta distribution, for example, this is merely a 
statement of the completeness of the polynomials-rather than an expansion theorem 
for the GF itself. This basic limitation has led to the introduction [4,5] of the 
significantly new concept of a rational function approximation of the singular eigen- 
function 4( U, p ) .  As explained in [5], rational function approximations for the Dirac 
delta and Cauchy principal value exist, and it is the purpose of this paper to demonstrate 
how the transient integral problem can be resolved in terms of these rational Cauchy 
sequences. As the concern here is with half-range problems only, we will discretise 
the continuous spectrum ( 0 , l )  at the zeros of a new set of orthogonal polynomials [6] 
with respect to a simple and accurate closed-form rational approximation of the Case 
half-range weight function W ( p ) ,  Os p zs 1 [4,6]. In summary, the approach is to 
discretise the continuous spectrum and use this with a regular, rational function 
approximation of the singular eigenfunction 4( v, p )  to obtain the desired solution of 
the transport equation. 

2. The theory 

This section is divided into several subsections that introduce the various components 
of the theory of the discretised spectral approximation. 

2.1. Rational function approximation of the singular eigenfunction 

The rational function approximation of Case's singular eigenfunction 

cv  1 
4 ( V ,  P ) = - P - + A ( V ) G ( V - ~ )  2 v - p  

is given by [5] 

4 , ( v , p ) 2  +L A & 

2 ( v - p ) 2 + & 2  rrE ( v - p ) 2 + & '  

where the normalisation s', 4,( U, p )  d p  = 1 gives 

L=[l-:ln( ( 1 + v ) 2 + & 2  ) ] [ t a n - ~ ( e ) + t a n - ~ ( ? ) ] - '  
r e  (1  - Y)* + E 2  

& + 0 .  
+i [ 1 - 7 l n  (E)] = - A ( v )  1 

rr rr 

From the details of [5] we recall the following salient features: 
(i)  for the present purpose a G F  is an element of the completion of the space of 

integrable functions X ( I )  with convergence defined with respect to the class of test 
functions C,"( I ) ,  i.e. a G F  on I is an equivalence class, or generalised limit, of Cauchy 
sequences in X ( I )  [7], and 
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(ii) the convergence of v, p )  to 4(  v, p )  for arbitrary v is in the above distribu- 
tional sense in L,, 1 < p <CO, i.e. 

ll4(~,cL)-4~(~,Il.)llP-o E - 0 ;  l<p<Co. (2.4) 

Remark. It is sufficient to consider the test class to be C:(I)  rather than the more 
restrictive 9 ( Z )  necessary in the Schwartz definition of a distribution as a continuous 
linear functional on 9 ( Z )  [7]. 

With the rational function approximation chosen as in (2.1), it is shown in the following 
that the solution of the transport equation can be expressed as 

N 

lCT,N(X, I L )  = a(v0 )  e-x’y9(vo, C L ) +  c a ( v , )  e-”’”44,(v,, P )  (2.5) 
1=1 

where the choice of the quadrature nodes { v , } r  is explained below. 

2.2. Quadrature scheme of the transient integral 

In writing (2.5), we have replaced the transient integral 5: A( v )  e-”’”4( v, p )  dv of the 
exact solution by the sum 

As is well known, the evaluation of the coefficients A( v )  leads to a singular integral 
equation of the Cauchy type for A( v). However, in practice, this solution of an integral 
equation is unnecessary as both a(  vo) and A(v) can be simply obtained by the use of 
the half-range orthogonality relations [8, 11. In order that (2.6) replace the exact 
transient integral, it is necessary and sufficient, therefore, that the solution of the 
Fredholm integral equation ( F I E )  with (2.1) as the kernel tends as E - 0  to the solution 
of the corresponding singular integral equation (SIE)  with 4 (  v, p )  as kernel. To show 
this we note the following results. 

Result 1 .  Let 

and 

1 
, 4(s)  ds. 

57 E I‘ - 1  ( s  - t ) 2 +  E L  
G ( t - s ) 4 ( s ) d s  - A & ( t ) = -  

Then it is known [5] that H4 E Lp(-l ,  l ) ,  A 4  E L,(-l, 1 )  forp > 1 .  Also / I  H4 - H e 4  / I p  + 

0 and IlA4 -AE4lIp  - 0 E + 0 for all 4 E L,(-l, l ) ,  p > 1 .  This implies, by the Banach- 
Steinhaus theorem, that H, and A F  are uniformly bounded, i.e. 1 1  H, / I p  < M ,  , 1 1  A ,  l i p  < 
M 2 .  Let us now consider the S I E  and their corresponding Fredholm approximations: 

u ( t ) =  f ( t ) + A u ( t )  u ( t ) =  f ( t ) + H u ( t )  SIE 

U,( t )  =f( t )  + A,u, ( t )  FIE  0, ( t )  = f ( t )  + H A  ( t ) * 



1344 A Sengupta and C K Venkatesan 

The operators H, and A f  are compact in Lp(-l, l ) ,  C(-1, l ) ,  and hence the F I E  can 
be solved by the degenerate kernel method. Denoting the S I E  and F I E  in the forms 
( I  - K ) y  =f and (I  - K, )y ,  =f respectively, using the identity 

T-1- s-I = T-’ 
E E ( S -  T,)S-’ 

and assuming the solution of the S I E  to exist (i.e. assuming S-’  to exist) we obtain the 
second result. 

Result 2. The S I E  and FIE have solutions y = S-’f and y ,  = Ti ’ f  respectively, and 

IIY, - Y I1 I1 Ti’ I1 lKK - KE )Y I1 * 

IIY, -y l I= l l ( I -~~)- l f - (~-~)- ’ f l l  
Proof, With S = I - K,  T, = I - K ,  and the identity above, we get 

s I I ( I - K J - ’ ( K ,  - K ) ( I - K ) - ’ ~ / ~  

S I l ( I -  KJ-Y ll(K - K ) Y l l .  

Hence by result 1, y ,  + y strongly as E + 0. 

To determine the best possible (i.e. Gaussian) quadrature nodes in 
the half-range weight W ( p ) ’  to be the natural weight function 
problem. Writing 

~ ~ ( X , L ) = a ( v o ) e - x i ’ o m ( y o , p ) + l l A ~ ( y )  0 e-x/”m,(v, 

as 

2.6), we recognise 
of the half-range 

t )  dv  (2 .7)  

v-U, 

j-1 vi - v, 
l i (  v )  = n - 

J f l  

are the fundamental polynomials of Lagrange interpolation, and { v,}; are the zeros 
of the set of orthogonal polynomials WRT W(v), OS V S  1 ,  i.e. these are the Gaussian 
nodes of the half-range problem. With this interpolation, (2.7) becomes 

N 

CL,,(& P )  = a(v0 )  e-”’”o 4 ( % >  F)+ c a ( v , )  e-x’”$JE(v,, I*.) (2.8) 
I = I  

where 

which is ( 2 . 5 ) .  
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2.3. Simple, accurate, closed-form approximation of W ( p )  [4, 61 

Because of its essentially transcendental nature, arbitrary integrations involving W (  p ) ,  
as in the expression for a ( v i )  above, cannot be carried out straightforwardly. To 
overcome this, the following simple and accurate closed-form rational approximation 
of the lowest order was introduced [4] for W ( p ) :  

where 
R'o'=0.5(R++R-) cy = vo( 1 - c)"2. (2.10) 

with a, and as given in [4]. Equation (2.9) is a one-parameter approximation of 
the half-range weight function where the parameter R"' is given by (2.10). For 
higher-order approximations we use 

(2.11) 

X ( ' ) ( - p )  = (a +p)" f l " ' ( -p )  (2.12) 

to give the explicit result to order one 

c y L  
(0) P y ' O ' b )  (2.13) n ( 1 )  ( - p ) = l - - L  

2 0  

1 c 1  
2 2 '  v i (1-c)  1 - c  v o - p  

a h )  = 

X'O' ( -p )  =(CY +p)-1R'O' 
Hence 

and 

(2.14a) 

(2.146) 

are the two lowest-order approximations of the X function. The reliability of these 
expressions depend on Cl'" ' ,  i.e. on equation (2.10), obtained from the orthogonality 
integral involving 4 ( * v o ,  p )  [4]. Denoting 

to be the errors in X'O', X " ' ,  we show in table 1 the variation in E''', E ( ' )  for some 
values of p. Introducing (2,146) in the expression for W ( p )  [1], gives a first-order 
approximation, W'"( p ) .  The form of W ' " ' ( p )  is particularly useful, however, as unlike 
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Table 1. R'", a"', Xi ' ' ,  X"' for different g. 

P f l ( l ) ( - p )  X'O'( -/.I) X " ' ( - p )  E:O'X 10' El" x 10' 

c=O.1, R+=0.989872, R_=0.991 211, R'o'=0.990542 

0.2 0.990 533 0.862 328 0.862 320 
0.4 0.989 414 0.734 451 0.733 615 
0.6 0.989 538 0.639 602 0.638 955 
0.8 0.990 010 0.566 450 0.566 146 

0.990 574 0.508 313 0.508 330 1 .o 
c = 0.3, R, = 0.971 659, R-  = 0.975 391, 0"' = 0.973 525 

0.2 0.972 857 0.937 136 0.936 493 
0.4 0.970 094 0.785 842 0.783 073 
0.6 0.970 7 11 0.676 609 0.674 653 
0.8 0.972 205 0.594 037 0.593 231 
1 .o 0.973 883 0.529 426 0.529 622 

c=O.5, R+=0.959664, R_=0.959433, R"'=0.959548 

0.2 0.957 607 1.022 439 1.020 370 
0.4 0.954 159 0.842 826 0.838 092 
0.6 0.955 615 0.716 889 0.713 951 
0.8 0.958 212 0.623 695 0.622 826 
1 .o 0.960 965 0.551 944 0.552 759 

c=O.7, R+=0.948433, R_=0.947 192, R'"=0.947 812 

0.2 0.944 435 1.100 835 1.096 913 
0.4 0.940 972 0.893 325 0.886 878 
0.6 0.943 448 0.751 639 0.748 178 
0.8 0.947 139 0.648 745 0.648 284 
1 .o 0.950 883 0.570 630 0.572 478 

c = 0.9, R +  = 0.938 079, 0- = 0.937 206, R"' = 0.937 643 

0.2 0.932 814 1.169 355 1.163 332 
0.4 0.929 728 0.935 915 0.928 015 
0.6 0.933 286 0.780 169 0.776 544 
0.8 0.938 021 0.668 863 0.669 132 
1 .o 0.942 665 0.585 351 0.588 487 

0.005 725 
-1.127 328 
- 1.002 544 
-0.528 320 

0.036 578 

-0.566 059 
-3.434 005 
-2.811 247 
-1.281 995 

0.435 605 

-1.731 008 
-5.396 142 
-3.902 498 
- 1.21 1 899 

1.635 921 

-3.052 502 
-6.823 075 
-4.246 147 
-0.383 757 

3.515 971 

-4.383 608 
-7.833 690 
-4.090 807 

0.901 236 
5.766 180 

0.014 837 
0.012 388 
0.01 1 478 
0.009 256 
0.004 260 

0.120419 
0.102 336 
0.087 443 
0.075 436 
0.066 792 

0.295 706 
0.250 260 
0.212 156 
0.182 778 
0.161 727 

0.521 286 
0.443 135 
0.377 526 
0.326 466 
0.287 488 

0.789 201 
0.672 875 
0.574 355 
0.498 273 
0.440 208 

the higher-order more involved approximations, it can be used as a weight function 
in the evaluation of integrals without undue algebraic complexity. 

To verify how accurately this may actually be achieved, we evaluated the following 
test integrals: 

ILo'(v) = lo' W ( o ) ( ~ ) 4 ( * v ~ ,  ~ ) 4 ( v ,  p )  d p  

II(')(v) = lo' W(o'(p)q5( v, p )  dp 

to be 
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where 9, = C ~ Y , / ~ S ~ ( ~ ~ (  1 - c). 
Comparison of Iy) and 11“’ with the true values of these integrals WRT W ( p )  

(namely 0, c2v~vX(-v0)/2(  v,+ v )  and cv/2 respectively) is shown in table 2. Together 
with the example of [4], this demonstrates that the simple W‘’’(p) can be used as the 
weight function in half-range problems with a fair degree of confidence; see, however, 
Q 4 below for further discussions on this. 

2.4. The quadrature nodes 

The collocation points for use in (2.5) are taken to be the zeros of the polynomials 
CN( v )  [6]-the set of orthogonal polynomials in ( 0 , l )  WRT W(’) (p) ,  Table 3 shows 
the zeros for some values of c and N = 1,2,3,4,5.  

2.5. The parameter E 

So far, E has been a convergence parameter in &(v, p ) .  In order to be usable in the 
discretised spectral, or P a N  approximation, it must be a finite and small positive 
quantity, since as E + 0 the Poisson and conjugate Poisson kernels must distributionally 
converge to their respective GF. It is also necessary, from § 2.2,  that 

E + O  as N+m.  
An acceptable semi-empirical E -  N relationship is obtained by noting that Poisson 
representation of the delta function 6 , ( x )  = &/.rr(x2+ E’) tends to infinity at x = 0 as 
l /~ . r r .  Setting this equal to N, the number of transient terms in (2.5), gives the required 
relationship to be 

E = ( N.rr)-’. (2.15) 

For a particular N ( N  = O j n o  transients), (2.15) gives the corresponding E.  Equation 
(2.15) can be improved from first principles. This definition, not used in this work, is 
given in the appendix. 

2.6. The A a ,  approximation 

With the different components of the P a N  approximation introduced above, it follows 
that the P a N  solution of the transport equation can be expressed as given by (2.5). 
The superposition coefficients { a (  v,)},” are to be obtained from a half-range boundary 
condition of the form 

N 

f ( p ) = a ( v , ) e - ‘ o ’ l ” o ~ ( v , , p ) +  C a ( v , )  e - x o ’ u ~ ~ c ( ~ , , p )  (2.16) 
, = I  
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Table 2.  Difference of the integrals IF), 11‘” from their true values I = ,  11. 

0.2 

0.4 

0.6 

0.8 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.535 385 ( - 5 )  
0.707 294 (-6) 
0.662 996 (-5) 
0.146901 (-4) 
0.227 235 (-4) 
0.304 229 (-4) 
0.376 692 (-4) 
0.444 289 (-4) 
0.507 083 (-4) 

0.442 137 (-4) 
0.447 175 ( - 5 )  
0.561 205 (-4) 
0.121 524 (-3) 
0.185 919 (-3) 
0.247 063 (-3) 
0.304 177 (-3) 
0.357 112 (-3) 
0.406051 (-3) 

0.157 646 (-3) 
0.359 964 (-5) 
0.220 750 (-3) 
0.457 912 (-3) 
0.688 198 (-3) 
0.904 600 (-3) 
0.110 509 (-2) 
0.128971 (-2) 
0.145 935 (-2) 

0.455 944 (-3) 
0.3 1 1 475 (-4) 
0.711 181 (-3) 
0.141 645 (-2) 
0.209 275 (-2) 
0.272 244 (-2) 
0.330 162 (-2) 
0.383 184 (-2) 
0.431 668 (-2) 

0.572 870 ( - 5 )  
0.294 326 (-5) 
0.147 796 (-6) 
0.205 905 (-5) 
0.263 190 ( - 5 )  
0.204 555 (-5) 
0.542 429 (-6) 
0.165 289 ( - 5 )  
0.435 392 (-5) 

0.396 535 (-4) 
0.919 042 ( - 5 )  
0.219 256 (-4) 
0.421 658 (-4) 
0.507 541 (-4) 
0.494671 (-4) 
0.404 587 (-4) 
0.256 554 (-4) 
0.662 701 ( - 5 )  

0.126764(-3) 
0.609 907 (-5) 
0.138 257 (-3) 
0.228 937 (-3) 
0.276 101 (-3) 
0.286 580 (-3) 
0.268 323 (-3) 
0.228 385 (-3) 
0.172483 (-3) 

0.384 454 (-3) 
0.440 392 (-4) 
0.490 447 (-3) 
0.826 292 (-3) 
0.103920(-2) 
0.114 477 (-2) 
0.116362 (-2) 
0.111 481 (-2) 
0.101 429 (-2) 

0.469 284 (-4) 
0.314496 ( - 5 )  
0.501 818 (-4) 
0.93 1 733 (-4) 
0.119912 (-3) 
0.129 249 (-3) 
0.121 829 (-3) 
0.989 440 (-4) 
0.620 606 (-4) 

0.191 159 (-3) 
0.171 081 ( - 5 )  
0.221 993 (-3) 
0.400 548 (-3) 
0.512 081 (-3) 
0.553 502 (-3) 
0.528 412 (-3) 
0.442 622 (-3) 
0.302 376 (-3) 

0.463 714 (-3) 
0.183 628 (-4) 
0.577 815 (-3) 
0.102 877 (-2) 
0.132 375 (-2) 
0.145 834 (-2) 
0.144268 (-2) 
0.129 125 (-2) 
0.101 898 (-2) 

0.104 659 (-2) 
0.913 965 (-4) 
0.143.592 (-2) 
0.258 405 (-2) 
0.343 496 (-2) 
0.397 879 (-2) 
0.423 548 (-2) 
0.422 360 (-2) 
0.400 246 (-2) 

f(p), p>O, given. Either the Mark (collocation) or Marshak (Galerkin) type of 
condition may now be imposed on the residual obtained from (2.16) for a finite number 
of terms N in the sum. The simpler collocation procedure uses the N + 1 zeros of 
C N + I ( p )  to form the N +  1 equations for the a(  v)), i = 0 , 1 , 2 , .  . . , N. For not too large 
N, or when f(p) is either a constant or has a singular form (as in the albedo problem, 
for example), the algebraically more complicated Galerkin procedure WRT Wio’( p ) as 
the weight function is to be used. This requires the evaluation of the following integrals: 

I LO’( v )  1‘P:Cv) = lo’ Wio’(p)4(vo, p)dJ,(v,p) d p  

w(o)(p)dJAv,, p)dJ(v,, p )  d p .  
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We have 

and 

(2.17) 

(2.18) 
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- 
0, 

I \  
\ 

where 

9=c/2R‘O’(l-c) 

A , , = [ ( v , +  v , ) ’ + E ’ ] [ ( v , -  Y , ) ’ + E ’ ] .  

% = c’v,/~R‘O’( 1 - C )  

Figure 1 shows the Poisson and conjugate Poisson kernels for some e values, while 
figures 2 and 3 plot the ACT, and A a ,  approximations of 4(  v, w ) .  Here and in the 
following the discretised spectrum is ordered according to vo > v l  > v2 > . . > vN. 

-0 4 -0 2 0 0 2  0 4  
X 

Figure 1. ( a )  The Poisson kernel S,(x). ( b )  The conjugate Poisson kernel P , ( x ) .  The 
maximum and minimum values of P , ( x )  are *SO for E = *0.01. 
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-O.bL 

\ 
Figure 3. 302 approximations of the singular eigenfunction, for E = 1/27r and values of 
0 c=O. l ,  v,=O.845, v2=0.356; x c=0.5 ,  v,=O.848, u2=0.362; 0 c = 0 . 9 ,  ~ , = 0 . 8 5 4 ,  
U> = 0.377. 

3. Sample numerical result 

As it is not the purpose of the present paper to report on the details of the numerical 
adaption of the theory above, this section contains a sample illustration of the A a ,  and 
Au2 calculations for the emergent angular distribution and leakage of the standard 
Milne problem, using the collocation method for the residual. These results are 
therefore not intended to be definitive, and details of the Galerkin calculations will 
be reported separately. For this problem, the AuN approximation takes the form 

$N(x, P) = a,(vo)  e - x ’ y o ~ ( ~ o ,  p ) + e X ’ ” o ~ ( - v ~ ,  P)+ C a, (v , )  e-x’”i4E(Y,, P )  

where the coefficients { a , ( v , ) } ~  are obtained from the equation 

- 4 ( - y o ,  P,) = 4 ( ~ 0 ) 4 ( ~ 0 ,  P,)+ C a€(v2)4€(vl ,  P,) 

where C N (  Y,) = 0 and c N + 1 ( & )  = 0. Then the emergent distribution is 

N 

# = I  

N 

j = 1,2 ,  . . . , N + 1 
, = l  

and the expression for leakage takes the form 
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Table 3. Zeros of the polynomials C N ( k ) ,  N = 1(1)5. 

C N = l  N = 2  N = 3  N = 4  N = 5  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.667 877 00 

0.669 245 24 

0.670 810 50 

0.672 619 46 

0.674 736 59 

0.677 267 61 

0.680 403 12 

0.684 536 32 

0.690 738 59 

0.356 099 81 
0.845 386 45 

0.377 302 60 
0.845 880 39 

0.358 700 12 
0.846 444 94 

0.360 337 66 
0.847 097 47 

0.362 273 12 
0.847 862 45 

0.364 599 37 
0.848 780 06 

0.367 483 08 
0.849 922 76 

0.371 266 09 
0.851 440 60 

0.376 870 17 
0.853 745 28 

0.212 988 67 
0.591 242 24 
0.91 1 608 37 

0.213 737 53 
0.592 049 05 
0.91 1 830 09 

0.214 614 75 
0.592 978 71 
0.912 083 59 

0.215 649 98 
0.594 060 66 
0.912 376 84 

0.216 879 33 
0.595 334 56 
0.912 721 14 

0.218 359 71 
0.596 864 91 
0.913 135 04 

0.220 192 52 
0.598 767 80 
0.913 652 07 

0.222 584 47 
0.601 282 56 
0.914 341 84 

0.226 087 94 
0.605 060 32 
0.915 396 17 

0.140 158 06 
0.417 053 27 
0.723 591 06 
0.942 999 13 

0.140 619 96 
0.417 790 14 
0.724 083 58 
0.943 115 85 

0.141 163 34 
0.418 644 74 
0.724 649 48 
0.943 249 36 

0.141 806 94 
0.419 644 69 
0.725 306 76 
0.943 403 90 

0.142 572 89 
0.420 825 74 
0.726 080 26 
0.943 585 52 

0.143 495 54 
0.422 245 34 
0.727 010 57 
0.943 804 17 

0.144 835 89 
0.424 006 55 
0.728 170 84 
0.944 077 8 1 

0.146 117 61 
0.426 320 75 
0.729 712 49 
0.944 443 85 

0.148 269 28 
0.429 758 21 
0.732 050 00 
0.945 005 61 

0.098 790 05 
0.305 045 09 
0.562 517 54 
0.802 261 18 
0.960 250 82 
0.099 086 44 
0.305 630 81 
0.563 078 67 
0.802 572 37 
0.960 319 39 
0.099 435 94 
0.306 313 38 
0.563 726 45 
0.802 929 49 
0.960 397 84 
0.099 850 70 
0.307 115 21 
0.564 481 67 
0.803 343 97 
0.960 488 70 
0.100 344 76 
0.308 064 36 
0.565 372 17 
0.803 831 80 
0.960 595 55 
0.100939 74 
0.309 205 40 
0.566 443 14 
0.804 419 13 
0.960 724 31 
0.101 673 87 
0.310618 01 
0.567 775 79 
0.805 153 21 
0.960 885 66 
0.102 624 46 
0.31246492 
0.569 537 47 
0.806 132 04 
0.961 101 86 
0.103 996 01 
0.315 182 12 
0.572 182 95 
0.807 625 07 
0.961 434 56 
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Table 4. Values of the asymptotic coefficient in  the source-free Milne problem. 

C N = l , ~ = 0 . 3 1 8 3  N = 2 , ~ = 0 . 1 5 9 2  Exact 

0.2 0.0705 0.0199 -0.0004 
0.4 0.0254 -0,0044 -0.0273 
0.6 -0.0240 -0.0638 -0.1149 
0.8 -0.1517 -0.2280 -0.2827 

-0.4362 0.9 -0.3065 -0.3914 

Table 5. Emergent angular distribution in the source-free Milne problem. 

c = 0.2 c = 0.4 

-g N =  1 N = 2  Exact N = l  N = 2  Exact 

1 .o 1100.37 1100.37 1098.62 13.8992 13.8990 13.8823 
0.8 0.4987 0.4972 0.4965 0.9310 0.93 10 0.9324 
0.6 0.2486 0.2468 0.2466 0.4725 0.4723 0.4750 
0.4 0.1648 0.1628 0.1628 0.3099 0.3095 0.3133 
0.2 0.1224 0.1199 0.1202 0.2239 0.2230 0.2281 
0.0 0.0961 0.0925 0.0926 0.1669 0.1638 0.1686 

c = 0.6 c = 0.8 

-cL N = l  N = 2  Exact N = l  N = 2  Exact 
~~~ ~ 

1.0 3.2032 3.2035 3.2066 1.3033 1.2998 1.3019 
0.8 1.0557 1.0560 1.0603 0.8398 0.8362 0.8393 
0.6 0.6139 0.6143 0.6197 0.5989 0.5954 0.5999 
0.4 0.4183 0.4185 0.4256 0.4456 0.4420 0.4486 
0.2 0.3023 0.3018 0.3113 0.3323 0.3281 0.3378 
0.0 0.2176 0.2135 0.2225 0.2349 0.2268 0.2359 

Table 6. Leakage in the source-free Milne problem 

c = 0.2 c = 0.4 c = 0.6 c = 0.8 

N = l  0.8301 0.6621 0.5142 0.3709 
N = 2  0.8292 0.6619 0.5143 0.3690 
Exact 0.8280 0.6627 0.5170 0.3713 

Tables 4-6 show the results for N = 1,2 .  Table 4 compares a,( vo) with the exact 
a (  vo) = -exp( -2z0/ vo) and shows that a , ,2T(  vo) is more accurate than U , , = (  vo) in all 
the cases. 

4. Discussion 

In this paper, we have shown how the singular eigenfunction method can be formulated 
in terms of regular functions which tend, as a parameter E in them approaches 0, to 
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the singular functions. This is achieved by approximating the singular eigenfunctions 
by a rational function rather than by the usual polynomial series. Discretisation of the 
continuous spectrum ( 0 , l )  is done through the zeros of the polynomials orthogonal 
in (0, 1) WRT the weight W‘O’(p)  [6]. It has been our experience that attempts to 
improve upon this simple one-parameter weight through more adjustable parameters 
are largely unsuccessful in the whole p interval. However, the zeros of C , ( p )  are 
the approximate Gaussian nodes for the half-range problem and therefore enjoy a 
special status as compared to, for example, equally spaced points which are not 
Gaussian for any weight. 

In our opinion, a more basic definition of E than (2.15) is necessary. For example, 
an arbitrary smaller E for a given N can lead to worsening of the numerical results. 
This is supports our hypothesis that E should be N dependent, and a definition using 
the concept of equivalent Cauchy sequences for the delta function is given in the 
appendix. Use of this definition in a Galerkin treatment of the residual is the subject 
of a separate publication [9]. 

Appendix. A fundamental definition of E 

The definition of E contained in this appendix is based on the idea of equivalent 
Cauchy sequences in a metric space. We recall that (i)  two Cauchy sequences {xk} 
and {Yk} in a metric space ( X ,  d )  are said to be equivalent if d(&,  y k )  + 0, k + 03, and 
(ii) an equivalence class 2 consists of all Cauchy sequences equivalent to a given 
Cauchy sequence {Xk}. In this context, a distribution or generalised function can be 
defined as the common limit 8? of an equivalence class of locally integrable functions 
(i.e. it is an element of the completion of the space of locally integrable functions) 
with convergence defined WRT the metric 

d(xz, XI)= (Xt(t)-Xj(t))P(t) d t  dt) E c30. SI 
In this new definition of E, we consider the first two among the following examples 

of equivalent delta convergent Cauchy sequences: 

- 1 / 2 N s  tS  1 / 2 N  N = 0 , 1 , 2 ,  . . .  
otherwise 

s%’( t )  = 

s‘,“( t )  = sin( nt) /  ~t n+co 

s?’( t )  = exp(- t’/ E ) / (  ,E)”’ E + O  

~ ‘ , ~ ’ ( t )  = n exp(-nltl)/2 n + m  ( ‘ 4 5 )  

and note that (A l )  and (A2) are normalised to unity in the intervals (-1/2N, 1 / 2 N )  
and (-a, 00) respectively. In terms of these, 4( v, p ) ,  - 1  s vs 1, has the following 
equivalent representations: 

and 



Discretised spectral approximation in neutron transport 1355 

If v and N in (A6) do not satisfy the restrictions shown there, N is to be replaced by 
N* such that normalisation again holds and in this case, one has 

where N* is given by 

( 1  + vs 1/2N)-'  v 7 1 /2N < * 1  
v + 1/2 N ) - '  v * 1 / 2 N > * l  

such that 

With the v discretised at the zeros of C N ,  only case (A9) can arise for v = U,; for all 
other v = v2, v3,. . . , vN, N *  = N. The definition of E is now obtained by setting 

4 ~ ( ~ ,  v ) = 4 N * ( v ,  v)* 

This gives the fundamental E - N  relationship to be 

E (  N, U) = (N*r,)- '  

where 

rTT, = tan-' (T) l + v  +tan-' ( y) 
so as to normalise (A2) in ( - 1 , l ) .  Expression (2.15) used in the main text, is an 
approximation of (A10) when both ( A l )  and (A2) are normalised in (-00, 00) instead 
of ( - 1 ,  1 ) .  An effective iteration scheme for (A10) is: E ~ + ,  = ( N * r E , ) - ' ,  E ~ =  ( N * r ) - ' .  
We remark that the reason why point equivalence rather than distributional equivalence 
of and 4N% has been employed in the derivation of (A10) is that in the later use 
the distinctive character of the Poisson kernel would be largely lost in favour of the 
representation (A1 ). 
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