On a discretised spectral approximation in neutron transport theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 211341
(http://iopscience.iop.org/0305-4470/21/6/011)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 12:34

Please note that terms and conditions apply.

On a discretised spectral approximation in neutron transport theory

A Sengupta and C K Venkatesan
Nuclear Engineering and Technology Programme, Indian Institute of Technology, Kanpur 208016, India

Received 14 July 1987, in final form 4 November 1987

Abstract

An approximation method significantly different from existing ones is developed in this paper for the one-speed neutron transport equation. The theory is based on the singular eigenfunction method, and is founded on the new concepts of (i) a rational function approximation of the Case singular eigenfunction and (ii) discretisation of the continuous spectrum (0,1) of the half-range transport problem using the roots of a set of polynomials orthogonal in $(0,1)$ with respect to a simple closed-form accurate approximation of the half-range weight function $W(\mu)$. A sample numerical example is given to illustrate the application of the theory.

1. Introduction

The neutron transport equation in one-dimensional plane geometry is an interesting representative of a class of linear equations in mathematical physics where the associated eigenspectrum is the union of discrete and continuous parts. The general solution of such an equation is therefore written as the sum of an integral over the continuous spectrum and a sum over the discrete. Among the exact methods to obtain this representation for the transport equation, that of Case [1] (the Weiner-Hopf approach is an equivalent alternate decomposition) is an expansion method in terms of a complete set of spectral functions of the inverse transport operator, where one member of the complete family is a singular distribution or generalised function. The solution procedure is based on Muskhelishvili's treatment of singular equations of Cauchy type, which is derived from the theory of analytic functions of a complex variable.

Though the singular eigenfunction method is an elegant formalism, it can be considered to be a formal method as the exact solution it produces is, in general, unsuited for numerical calculations. This is due to the appearance of a 'transient integral' term involving the singular eigenfunction and expansion coefficients that satisfy singular integral equations. This means that the resulting 'transient integral' cannot be expressed in a closed form, a feature that we shall refer to as the 'transient integral problem' of the neutron transport equation. Of the two noteworthy recent developments that circumvent the transient integral problem without actually solving it, the F_{N} method [2] projects Case's half-range solution onto a subspace of the full-range problem and uses numerical methods to solve a resulting Fredholm integral equation. This conceptually simple method has been utilised by Siewert and coworkers [2] for a variety of test problems to give very accurate numerical results. The less
investigated $T P_{N}$ method [3], on the other hand, replaces the transient integral by a sum and obtains the superposition coefficients of the solution by generalising the Marshak boundary conditions so as to obtain the exact extrapolated endpoint in the standard Milne problem. The series replacement of the transient integral is, as usual, in terms of classical orthogonal polynomials and it needs to be pointed out that such an expansion of singular distributions is only a formal represntation of the generalised function (GF)-in the case of the delta distribution, for example, this is merely a statement of the completeness of the polynomials-rather than an expansion theorem for the GF itself. This basic limitation has led to the introduction $[4,5]$ of the significantly new concept of a rational function approximation of the singular eigenfunction $\phi(\nu, \mu)$. As explained in [5], rational function approximations for the Dirac delta and Cauchy principal value exist, and it is the purpose of this paper to demonstrate how the transient integral problem can be resolved in terms of these rational Cauchy sequences. As the concern here is with half-range problems only, we will discretise the continuous spectrum $(0,1)$ at the zeros of a new set of orthogonal polynomials [6] with respect to a simple and accurate closed-form rational approximation of the Case half-range weight function $W(\mu), 0 \leqslant \mu \leqslant 1[4,6]$. In summary, the approach is to discretise the continuous spectrum and use this with a regular, rational function approximation of the singular eigenfunction $\phi(\nu, \mu)$ to obtain the desired solution of the transport equation.

2. The theory

This section is divided into several subsections that introduce the various components of the theory of the discretised spectral approximation.

2.1. Rational function approximation of the singular eigenfunction

The rational function approximation of Case's singular eigenfunction

$$
\phi(\nu, \mu)=\frac{c \nu}{2} P \frac{1}{\nu-\mu}+\lambda(\nu) \delta(\nu-\mu)
$$

is given by [5]

$$
\begin{equation*}
\phi_{\varepsilon}(\nu, \mu)=\frac{c \nu}{2} \frac{\nu-\mu}{(\nu-\mu)^{2}+\varepsilon^{2}}+\frac{\lambda_{\varepsilon}}{\pi_{\varepsilon}} \frac{\varepsilon}{(\nu-\mu)^{2}+\varepsilon^{2}} \tag{2.1}
\end{equation*}
$$

where the normalisation $\int_{-1}^{1} \phi_{\pi}(\nu, \mu) \mathrm{d} \mu=1$ gives

$$
\begin{align*}
& \frac{\lambda_{\varepsilon}}{\pi_{\varepsilon}}=\left[1-\frac{c \nu}{4} \ln \left(\frac{(1+\nu)^{2}+\varepsilon^{2}}{(1-\nu)^{2}+\varepsilon^{2}}\right)\right]\left[\tan ^{-1}\left(\frac{1+\nu}{\varepsilon}\right)+\tan ^{-1}\left(\frac{1-\nu}{\varepsilon}\right)\right]^{-1} \tag{2.2}\\
& \rightarrow \frac{1}{\pi}\left[1-\frac{c \nu}{2} \ln \left(\frac{1+\nu}{1-\nu}\right)\right]=\frac{1}{\pi} \lambda(\nu) \quad \varepsilon \rightarrow 0 . \tag{2.3}
\end{align*}
$$

From the details of [5] we recall the following salient features:
(i) for the present purpose a GF is an element of the completion of the space of integrable functions $X(I)$ with convergence defined with respect to the class of test functions $C_{0}^{\times}(I)$, i.e. a GF on I is an equivalence class, or generalised limit, of Cauchy sequences in $X(I)$ [7], and
(ii) the convergence of $\phi_{\varepsilon}(\nu, \mu)$ to $\phi(\nu, \mu)$ for arbitrary ν is in the above distributional sense in $L_{p}, 1<p<\infty$, i.e.

$$
\begin{equation*}
\left\|\phi(\nu, \mu)-\phi_{\varepsilon}(\nu, \mu)\right\|_{p} \rightarrow 0 \quad \varepsilon \rightarrow 0 ; 1<p<\infty \tag{2.4}
\end{equation*}
$$

Remark. It is sufficient to consider the test class to be $C_{0}^{\infty}(I)$ rather than the more restrictive $\mathscr{D}(I)$ necessary in the Schwartz definition of a distribution as a continuous linear functional on $\mathscr{D}(I)$ [7].

With the rational function approximation chosen as in (2.1), it is shown in the following that the solution of the transport equation can be expressed as

$$
\begin{equation*}
\psi_{\varepsilon N}(x, \mu)=a\left(\nu_{0}\right) \mathrm{e}^{-x / \nu_{0}} \phi\left(\nu_{0}, \mu\right)+\sum_{i=1}^{N} a\left(\nu_{i}\right) \mathrm{e}^{-x / \nu_{1}} \phi_{\varepsilon}\left(\nu_{i}, \mu\right) \tag{2.5}
\end{equation*}
$$

where the choice of the quadrature nodes $\left\{\nu_{i}\right\}_{1}^{N}$ is explained below.

2.2. Quadrature scheme of the transient integral

In writing (2.5), we have replaced the transient integral $\int_{0}^{1} A(\nu) \mathrm{e}^{-x / \nu} \phi(\nu, \mu) \mathrm{d} \nu$ of the exact solution by the sum

$$
\begin{equation*}
\sum_{i=1}^{N} a\left(\nu_{i}\right) \mathrm{e}^{-x / \nu_{i}} \phi_{\varepsilon}\left(\nu_{i}, \mu\right) \tag{2.6}
\end{equation*}
$$

As is well known, the evaluation of the coefficients $A(\nu)$ leads to a singular integral equation of the Cauchy type for $A(\nu)$. However, in practice, this solution of an integral equation is unnecessary as both $a\left(\nu_{0}\right)$ and $\boldsymbol{A}(\nu)$ can be simply obtained by the use of the half-range orthogonality relations $[8,1]$. In order that (2.6) replace the exact transient integral, it is necessary and sufficient, therefore, that the solution of the Fredholm integral equation (FIE) with (2.1) as the kernel tends as $\varepsilon \rightarrow 0$ to the solution of the corresponding singular integral equation (SIE) with $\phi(\nu, \mu)$ as kernel. To show this we note the following results.

Result 1. Let

$$
H \phi(t)=\frac{1}{\pi} f_{-1}^{1} \frac{\phi(s)}{s-t} \mathrm{~d} s \quad H_{\varepsilon} \phi(t)=\frac{1}{\pi} \int_{-1}^{1} \frac{s-t}{(s-t)^{2}+\varepsilon^{2}} \phi(s) \mathrm{d} s
$$

and

$$
-\Delta \phi(t)=\int_{-1}^{1} \delta(t-s) \phi(s) \mathrm{d} s \quad-\Delta_{\varepsilon} \phi(t)=\frac{\varepsilon}{\pi} \int_{-1}^{1} \frac{1}{(s-t)^{2}+\varepsilon^{2}} \phi(s) \mathrm{d} s .
$$

Then it is known [5] that $H \phi \in L_{p}(-1,1), \Delta \phi \in L_{p}(-1,1)$ for $p>1$. Also $\left\|H \phi-H_{\varepsilon} \phi\right\|_{p} \rightarrow$ 0 and $\left\|\Delta \phi-\Delta_{\varepsilon} \phi\right\|_{p} \rightarrow 0 \quad \varepsilon \rightarrow 0$ for all $\phi \in L_{p}(-1,1), p>1$. This implies, by the BanachSteinhaus theorem, that H_{ε} and Δ_{ε} are uniformly bounded, i.e. $\left\|H_{\varepsilon}\right\|_{p}<M_{1},\left\|\Delta_{\varepsilon}\right\|_{p}<$ M_{2}. Let us now consider the SIE and their corresponding Fredholm approximations:

$$
\begin{array}{lll}
u(t)=f(t)+\Delta u(t) & v(t)=f(t)+H v(t) & \text { SIE } \\
u_{\varepsilon}(t)=f(t)+\Delta_{\varepsilon} u_{\varepsilon}(t) & v_{\varepsilon}(t)=f(t)+H_{\varepsilon} v_{\varepsilon}(t) . & \text { FIE }
\end{array}
$$

The operators H_{ε} and Δ_{ε} are compact in $L_{p}(-1,1), C(-1,1)$, and hence the fie can be solved by the degenerate kernel method. Denoting the SIE and FIE in the forms $(I-K) y=f$ and $\left(I-K_{\varepsilon}\right) y_{\varepsilon}=f$ respectively, using the identity

$$
T_{\varepsilon}^{-1}-S^{-1}=T_{\varepsilon}^{-1}\left(S-T_{\varepsilon}\right) S^{-1}
$$

and assuming the solution of the SIE to exist (i.e. assuming S^{-1} to exist) we obtain the second result.

Result 2. The sie and fie have solutions $y=S^{-1} f$ and $y_{\varepsilon}=T_{\varepsilon}^{-1} f$ respectively, and

$$
\left\|y_{\varepsilon}-y\right\| \leqslant\left\|T_{\varepsilon}^{-1}\right\|\left\|\left(K-K_{\varepsilon}\right) y\right\| .
$$

Proof. With $S=I-K, T_{\varepsilon}=I-K_{\varepsilon}$ and the identity above, we get

$$
\begin{aligned}
\left\|y_{\varepsilon}-y\right\|= & \left\|\left(I-K_{\varepsilon}\right)^{-1} f-(I-K)^{-1} f\right\| \\
& \leqslant\left\|\left(I-K_{\varepsilon}\right)^{-1}\left(K_{\varepsilon}-K\right)(I-K)^{-1} f\right\| \\
& \leqslant\left\|\left(I-K_{\varepsilon}\right)^{-1}\right\|\left\|\left(K_{\varepsilon}-K\right) y\right\| .
\end{aligned}
$$

Hence by result $1, y_{\varepsilon} \rightarrow y$ strongly as $\varepsilon \rightarrow 0$.
To determine the best possible (i.e. Gaussian) quadrature nodes in (2.6), we recognise the half-range weight $W(\mu)^{1}$ to be the natural weight function of the half-range problem. Writing

$$
\begin{equation*}
\psi_{\varepsilon}(x, \mu)=a\left(\nu_{0}\right) \mathrm{e}^{-x / \nu_{0}} \phi\left(\nu_{0}, \mu\right)+\int_{0}^{1} A_{\varepsilon}(\nu) \mathrm{e}^{-x / \nu} \phi_{\varepsilon}(\nu, \mu) \mathrm{d} \nu \tag{2.7}
\end{equation*}
$$

as

$$
\psi_{\varepsilon}(x, \mu)=a\left(\nu_{0}\right) \mathrm{e}^{-x / \nu_{0}} \phi\left(\nu_{0}, \mu\right)+\int_{0}^{1} W(\nu) \bar{a}_{\varepsilon}(\nu) \mathrm{e}^{-x / \nu} \phi_{\varepsilon}(\nu, \mu) \mathrm{d} \nu
$$

where $A_{\varepsilon}(\nu)=W(\nu) \bar{a}_{\varepsilon}(\nu)$, we see that

$$
W(\nu) \bar{a}_{\varepsilon}(\nu) \mathrm{e}^{-x / \nu} \phi_{\varepsilon}(\nu, \mu)=W(\nu) \sum_{i=1}^{N} \bar{a}_{\varepsilon}\left(\nu_{i}\right) \mathrm{e}^{-x / \nu} \cdot \phi_{\varepsilon}\left(\nu_{i}, \mu\right) l_{i}(\nu)
$$

is the Lagrange interpolation formula for the expression on the Lhs, where

$$
l_{i}(\nu)=\prod_{\substack{j=1 \\ j \neq i}}^{N} \frac{\nu-\nu_{j}}{\nu_{i}-\nu_{j}}
$$

are the fundamental polynomials of Lagrange interpolation, and $\left\{\nu_{i}\right\}_{i}^{N}$ are the zeros of the set of orthogonal polynomials wrt $W(\nu), 0 \leqslant \nu \leqslant 1$, i.e. these are the Gaussian nodes of the half-range problem. With this interpolation, (2.7) becomes

$$
\begin{equation*}
\psi_{\varepsilon N}(x, \mu)=a\left(\nu_{0}\right) \mathrm{e}^{-x / \nu_{0}} \phi\left(\nu_{0}, \mu\right)+\sum_{i=1}^{N} a\left(\nu_{i}\right) \mathrm{e}^{-x / \nu_{i}} \phi_{\varepsilon}\left(\nu_{i}, \mu\right) \tag{2.8}
\end{equation*}
$$

where

$$
a\left(\nu_{i}\right)=\bar{a}_{\varepsilon}\left(\nu_{i}\right) \int_{0}^{1} W(\nu) l_{i}(\nu) \mathrm{d} \nu \quad \bar{a}_{\varepsilon}\left(\nu_{i}\right)=A_{\varepsilon}\left(\nu_{i}\right) / W\left(\nu_{i}\right)
$$

which is (2.5).

2.3. Simple, accurate, closed-form approximation of $W(\mu)[4,6]$

Because of its essentially transcendental nature, arbitrary integrations involving $W(\mu)$, as in the expression for $a\left(\nu_{i}\right)$ above, cannot be carried out straightforwardly. To overcome this, the following simple and accurate closed-form rational approximation of the lowest order was introduced [4] for $W(\mu)$:

$$
\begin{equation*}
W^{(0)}(\mu)=\frac{c}{2 \Omega^{(0)}(1-c)} \frac{\mu(\alpha+\mu)}{\nu_{0}+\mu} \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega^{(0)}=0.5\left(\Omega_{+}+\Omega_{-}\right) \quad \alpha=\nu_{0}(1-c)^{1 / 2} \tag{2.10}
\end{equation*}
$$

with Ω_{+}and Ω_{-}as given in [4]. Equation (2.9) is a one-parameter approximation of the half-range weight function where the parameter $\Omega^{(0)}$ is given by (2.10). For higher-order approximations we use

$$
\begin{align*}
& \Omega^{(i+1)}(-\mu)=1-\frac{c \nu_{0}^{2}}{2} \mu \int_{0}^{1} \frac{1-t^{2} / \nu_{0}^{2}(1-c)}{\left(\nu_{0}^{2}-t^{2}\right)(\mu+t) \Omega^{(i)}(-t)} \mathrm{d} t \tag{2.11}\\
& X^{(i)}(-\mu)=(\alpha+\mu)^{-1} \Omega^{(i)}(-\mu) \tag{2.12}
\end{align*}
$$

to give the explicit result to order one

$$
\begin{align*}
& \Omega^{(1)}(-\mu)=1-\frac{c \nu_{0}^{2}}{2 \Omega^{(0)}} \mu \mathscr{S}^{(0)}(\mu) \tag{2.13}\\
& \mathscr{\varphi}^{(0)}(\mu)=\alpha_{1}(\mu) \ln \left(\frac{1+\nu_{0}}{\nu_{0}}\right)+\alpha_{2}(\mu) \ln \left(\frac{\nu_{0}-1}{\nu_{0}}\right)+\alpha_{3}(\mu) \ln \left(\frac{1+\mu}{\mu}\right)
\end{align*}
$$

where

$$
\begin{aligned}
& \alpha_{1}(\mu)=\frac{c}{2(1-c)} \frac{1}{\nu_{0}\left(\nu_{0}-\mu\right)} \\
& \alpha_{2}(\mu)=\frac{c}{2(1-c)} \frac{1}{\nu_{0}\left(\nu_{0}+\mu\right)} \\
& \alpha_{3}(\mu)=\frac{1}{\nu_{0}^{2}(1-c)}-\frac{c}{1-c} \frac{1}{\nu_{0}^{2}-\mu^{2}} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
X^{(0)}(-\mu)=(\alpha+\mu)^{-1} \Omega^{(0)} \tag{2.14a}
\end{equation*}
$$

and

$$
\begin{equation*}
X^{(1)}(-\mu)=(\alpha+\mu)^{-1}\left(1-\frac{c \nu_{0}^{2}}{2 \Omega^{(0)}} \mu \mathscr{S}^{(0)}(\mu)\right) \tag{2.14b}
\end{equation*}
$$

are the two lowest-order approximations of the X function. The reliability of these expressions depend on $\Omega^{(0)}$, i.e. on equation (2.10), obtained from the orthogonality integral involving $\phi\left(\pm \nu_{0}, \mu\right)$ [4]. Denoting

$$
E_{X}^{(i)}(-\mu)=\frac{X(-\mu)-X^{(t)}(-\mu)}{X(-\mu)} \quad i=0,1
$$

to be the errors in $X^{(0)}, X^{(1)}$, we show in table 1 the variation in $E^{(0)}, E^{(1)}$ for some values of μ. Introducing (2.14b) in the expression for $W(\mu)$ [1], gives a first-order approximation, $W^{(1)}(\mu)$. The form of $W^{(0)}(\mu)$ is particularly useful, however, as unlike

Table 1. $\Omega^{(0)}, \Omega^{(1)}, X^{(0)}, X^{(1)}$ for different μ.

μ	$\Omega^{(1)}(-\mu)$	$X^{(0)}(-\mu)$	$X^{(1)}(-\mu)$	$E_{x}^{(0)} \times 10^{3}$	$E_{x}^{(1)} \times 10^{3}$
$c=0.1, \Omega_{+}=0.989872, \Omega_{-}=0.991211, \Omega^{(0)}=0.990542$					
0.2	0.990533	0.862328	0.862320	0.005725	0.014837
0.4	0.989414	0.734451	0.733615	-1.127 328	0.012388
0.6	0.989538	0.639602	0.638955	-1.002 544	0.011478
0.8	0.990010	0.566450	0.566146	-0.528 320	0.009256
1.0	0.990574	0.508313	0.508330	0.036578	0.004260
$c=0.3, \Omega_{+}=0.971659, \Omega_{-}=0.975391, \Omega^{(0)}=0.973525$					
0.2	0.972857	0.937136	0.936493	-0.566059	0.120419
0.4	0.970094	0.785842	0.783073	-3.434005	0.102336
0.6	0.970711	0.676609	0.674653	-2.811247	0.087443
0.8	0.972205	0.594037	0.593231	-1.281995	0.075436
1.0	0.973883	0.529426	0.529622	0.435605	0.066792
$c=0.5, \Omega_{+}=0.959664, \Omega_{-}=0.959433, \Omega^{(0)}=0.959548$					
0.2	0.957607	1.022439	1.020370	-1.731008	0.295706
0.4	0.954159	0.842826	0.838092	-5.396142	0.250260
0.6	0.955615	0.716889	0.713951	-3.902 498	0.212156
0.8	0.958212	0.623695	0.622826	-1.211899	0.182778
1.0	0.960965	0.551944	0.552759	1.635921	0.161727
$c=0.7, \Omega_{+}=0.948433, \Omega_{-}=0.947192, \Omega^{(0)}=0.947812$					
0.2	0.944435	1.100835	1.096913	-3.052 502	0.521286
0.4	0.940972	0.893325	0.886878	-6.823 075	0.443135
0.6	0.943448	0.751639	0.748178	-4.246147	0.377526
0.8	0.947139	0.648745	0.648284	-0.383757	0.326466
1.0	0.950883	0.570630	0.572478	3.515971	0.287488
$c=0.9, \Omega_{+}=0.938079, \Omega_{-}=0.937206, \Omega^{(0)}=0.937643$					
0.2	0.932814	1.169355	1.163332	-4.383608	0.789201
0.4	0.929728	0.935915	0.928015	-7.833690	0.672875
0.6	0.933286	0.780169	0.776544	-4.090 807	0.574355
0.8	0.938021	0.668863	0.669132	0.901236	0.498273
1.0	0.942665	0.585351	0.588487	5.766180	0.440208

the higher-order more involved approximations, it can be used as a weight function in the evaluation of integrals without undue algebraic complexity.

To verify how accurately this may actually be achieved, we evaluated the following test integrals:

$$
\begin{aligned}
& \mathrm{I}_{ \pm}^{(0)}(\nu)=\int_{0}^{1} W^{(0)}(\mu) \phi\left(\pm \nu_{0}, \mu\right) \phi(\nu, \mu) \mathrm{d} \mu \\
& \mathrm{II}^{(0)}(\nu)=\int_{0}^{1} W^{(0)}(\mu) \phi(\nu, \mu) \mathrm{d} \mu
\end{aligned}
$$

to be

$$
\begin{gathered}
\mathrm{I}_{+}^{(0)}=\mathscr{F}_{0}\left\{\frac{c \nu}{4}\left[\frac{\nu_{0}-\alpha}{\nu_{0}+\nu} \ln \left(\frac{\nu_{0}+1}{\nu_{0}}\right)+\frac{\nu_{0}+\alpha}{\nu_{0}-\nu} \ln \left(\frac{\nu_{0}-1}{\nu_{0}}\right)\right]\right. \\
\left.+\frac{\nu(\alpha+\nu)}{\nu_{0}^{2}-\nu^{2}}\left[1-\frac{c \nu}{2} \ln \left(\frac{1+\nu}{\nu}\right)\right]\right\}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{I}_{-}^{(0)}=\mathscr{F}_{0}\left\{\frac{c \nu}{2\left(\nu_{0}+\nu\right)^{2}}\left[\alpha \nu-\nu_{0}\left(2 \nu+\nu_{0}\right)\right]\left[\ln \left(\frac{\nu_{0}+1}{\nu_{0}}\right)-\frac{1}{\nu_{0}+1}\right]\right. \\
& \left.\quad+\frac{\nu(\alpha+\nu)}{\left(\nu_{0}+\nu\right)^{2}}\left[1-\frac{c \nu}{2} \ln \left(\frac{1+\nu}{\nu}\right)-\frac{c \nu_{0}}{2} \frac{1}{\nu_{0}+1}\right]\right\} \\
& \mathrm{II}^{(0)}=\frac{c \nu}{2 \Omega^{(0)}(1-c)}\left\{\frac{c}{2}\left[\frac{\nu_{0}\left(\nu_{0}-\alpha\right)}{\nu_{0}+\nu} \ln \left(\frac{\nu_{0}+1}{\nu_{0}}\right)-1\right]\right. \\
& \left.\quad+\frac{\nu_{0}+\alpha}{\nu_{0}+\nu}\left[1-\frac{c \nu}{2} \ln \left(\frac{1+\nu}{\nu}\right)\right]\right\}
\end{aligned}
$$

where $\mathscr{F}_{0}=c^{2} \nu_{0} / 4 \Omega^{(0)}(1-c)$.
Comparison of $\mathrm{I}_{ \pm}^{(0)}$ and $\mathrm{II}^{(0)}$ with the true values of these integrals wrt $W(\mu)$ (namely $0, c^{2} \nu_{0}^{2} \nu X\left(-\nu_{0}\right) / 2\left(\nu_{0}+\nu\right)$ and $c \nu / 2$ respectively) is shown in table 2. Together with the example of [4], this demonstrates that the simple $W^{(0)}(\mu)$ can be used as the weight function in half-range problems with a fair degree of confidence; see, however, § 4 below for further discussions on this.

2.4. The quadrature nodes

The collocation points for use in (2.5) are taken to be the zeros of the polynomials $C_{N}(\nu)$ [6]-the set of orthogonal polynomials in (0,1) WRT $W^{(0)}(\mu)$. Table 3 shows the zeros for some values of c and $N=1,2,3,4,5$.

2.5. The parameter ε

So far, ε has been a convergence parameter in $\phi_{\varepsilon}(\nu, \mu)$. In order to be usable in the discretised spectral, or $\Delta \sigma_{N}$ approximation, it must be a finite and small positive quantity, since as $\varepsilon \rightarrow 0$ the Poisson and conjugate Poisson kernels must distributionally converge to their respective GF. It is also necessary, from $\S 2.2$, that

$$
\varepsilon \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty .
$$

An acceptable semi-empirical $\varepsilon-N$ relationship is obtained by noting that Poisson representation of the delta function $\delta_{\varepsilon}(x)=\varepsilon / \pi\left(x^{2}+\varepsilon^{2}\right)$ tends to infinity at $x=0$ as $1 / \varepsilon \pi$. Setting this equal to N, the number of transient terms in (2.5), gives the required relationship to be

$$
\begin{equation*}
\varepsilon=(N \pi)^{-1} \tag{2.15}
\end{equation*}
$$

For a particular $N(N=0 \Rightarrow$ no transients $)$, (2.15) gives the corresponding ε. Equation (2.15) can be improved from first principles. This definition, not used in this work, is given in the appendix.

2.6. The $\Delta \sigma_{N}$ approximation

With the different components of the $\Delta \sigma_{N}$ approximation introduced above, it follows that the $\Delta \sigma_{N}$ solution of the transport equation can be expressed as given by (2.5). The superposition coefficients $\left\{a\left(\nu_{i}\right)\right\}_{0}^{N}$ are to be obtained from a half-range boundary condition of the form

$$
\begin{equation*}
f(\mu)=a\left(\nu_{0}\right) \mathrm{e}^{-x_{0} / \nu_{0}} \phi\left(\nu_{0}, \mu\right)+\sum_{i=1}^{N} a\left(\nu_{i}\right) \mathrm{e}^{-x_{0} / \nu_{1}} \phi_{\varepsilon}\left(\nu_{i}, \mu\right) \tag{2.16}
\end{equation*}
$$

Table 2. Difference of the integrals $I_{ \pm}^{(0)}, \mathrm{II}^{(0)}$ from their true values $\mathrm{I}_{ \pm}$, II.

c	ν	$\left\|\mathrm{I}_{+}^{(0)}(\nu)\right\|$	$\left\|\mathrm{I}_{-}^{(0)}(\nu)-\mathrm{I}_{-}(\nu)\right\|$	$\left\|\mathrm{II}^{(0)}(\nu)-\mathrm{II}(\nu)\right\|$
0.2	0.1	0.535385 (-5)	0.572870 (-5)	0.469284 (-4)
	0.2	$0.707294(-6)$	0.294326 (-5)	0.314496 (-5)
	0.3	0.662996 (-5)	0.147796 (-6)	0.501818 (-4)
	0.4	0.146901 (-4)	$0.205905(-5)$	0.931733 (-4)
	0.5	$0.227235(-4)$	$0.263190(-5)$	$0.119912(-3)$
	0.6	0.304229 (-4)	0.204555 (-5)	$0.129249(-3)$
	0.7	$0.376692(-4)$	$0.542429(-6)$	$0.121829(-3)$
	0.8	0.444289 (-4)	$0.165289(-5)$	0.989440 (-4)
	0.9	0.507083 (-4)	$0.435392(-5)$	$0.620606(-4)$
0.4	0.1	$0.442137(-4)$	$0.396535(-4)$	$0.191159(-3)$
	0.2	$0.447175(-5)$	$0.919042(-5)$	$0.171081(-5)$
	0.3	$0.561205(-4)$	0.219256 (-4)	0.221993 (-3)
	0.4	$0.121524(-3)$	$0.421658(-4)$	$0.400548(-3)$
	0.5	$0.185919(-3)$	0.507541 (-4)	$0.512081(-3)$
	0.6	$0.247063(-3)$	0.494671 (-4)	$0.553502(-3)$
	0.7	$0.304177(-3)$	0.404587 (-4)	$0.528412(-3)$
	0.8	$0.357112(-3)$	$0.256554(-4)$	$0.442622(-3)$
	0.9	$0.406051(-3)$	$0.662701(-5)$	$0.302376(-3)$
0.6	0.1	$0.157646(-3)$	$0.126764(-3)$	$0.463714(-3)$
	0.2	$0.359964(-5)$	$0.609907(-5)$	$0.183628(-4)$
	0.3	$0.220750(-3)$	$0.138257(-3)$	$0.577815(-3)$
	0.4	$0.457912(-3)$	$0.228937(-3)$	$0.102877(-2)$
	0.5	$0.688198(-3)$	$0.276101(-3)$	$0.132375(-2)$
	0.6	$0.904600(-3)$	$0.286580(-3)$	$0.145834(-2)$
	0.7	$0.110509(-2)$	0.268323 (-3)	0.144268 (-2)
	0.8	$0.128971(-2)$	$0.228385(-3)$	$0.129125(-2)$
	0.9	$0.145935(-2)$	0.172483 (-3)	$0.101898(-2)$
0.8	0.1	$0.455944(-3)$	$0.384454(-3)$	$0.104659(-2)$
	0.2	0.311475 (-4)	$0.440392(-4)$	0.913965 (-4)
	0.3	$0.711181(-3)$	0.490447 (-3)	0.143,592 (-2)
	0.4	$0.141645(-2)$	$0.826292(-3)$	0.258405 (-2)
	0.5	$0.209275(-2)$	$0.103920(-2)$	$0.343496(-2)$
	0.6	$0.272244(-2)$	$0.114477(-2)$	$0.397879(-2)$
	0.7	$0.330162(-2)$	$0.116362(-2)$	$0.423548(-2)$
	0.8	$0.383184(-2)$	$0.111481(-2)$	$0.422360(-2)$
	0.9	$0.431668(-2)$	0.101429 (-2)	0.400246 (-2)

$f(\mu), \mu>0$, given. Either the Mark (collocation) or Marshak (Galerkin) type of condition may now be imposed on the residual obtained from (2.16) for a finite number of terms N in the sum. The simpler collocation procedure uses the $N+1$ zeros of $C_{N+1}(\mu)$ to form the $N+1$ equations for the $a\left(\nu_{i}\right), i=0,1,2, \ldots, N$. For not too large N, or when $f(\mu)$ is either a constant or has a singular form (as in the albedo problem, for example), the algebraically more complicated Galerkin procedure wRT $W^{(0)}(\mu)$ as the weight function is to be used. This requires the evaluation of the following integrals:

$$
\begin{aligned}
& \mathrm{I}_{ \pm}^{(0)}(\nu) \quad \mathrm{I}_{\varepsilon+}^{(0)}(\nu)=\int_{0}^{1} W^{(0)}(\mu) \phi\left(\nu_{0}, \mu\right) \phi_{\varepsilon}(\nu, \mu) \mathrm{d} \mu \\
& \mathrm{III}_{\varepsilon}^{(0)}\left(\nu_{i}, \nu_{j}\right)=\int_{0}^{1} W^{(0)}(\mu) \phi_{\varepsilon}\left(\nu_{i}, \mu\right) \phi\left(\nu_{j}, \mu\right) \mathrm{d} \mu .
\end{aligned}
$$

We have

$$
\begin{align*}
& \mathrm{I}_{\varepsilon}^{(0)}(\nu)=\frac{\mathscr{F}_{0}}{2}\left(\frac{c \nu}{2}\left(\nu_{0}+\nu\right)+\frac{\lambda_{\varepsilon}}{\pi_{\varepsilon}} \varepsilon\right) \frac{\nu_{0}-\alpha}{\left(\nu_{0}+\nu\right)^{2}+\varepsilon^{2}} \ln \left(\frac{\nu_{0}+1}{\nu_{0}}\right) \\
&+\frac{\mathscr{F}_{0}}{2}\left(\frac{c \nu}{2}\left(\nu_{0}-\nu\right)-\frac{\lambda_{\varepsilon}}{\pi_{\varepsilon}} \varepsilon\right) \frac{\nu_{0}+\alpha}{\left(\nu_{0}-\nu\right)^{2}+\varepsilon^{2}} \ln \left(\frac{\nu_{0}-1}{\nu_{0}}\right) \\
&+\frac{\mathscr{F}_{0}}{\Delta_{0}}\left[\frac{c \nu}{4}\left[\left(\nu^{2}+\varepsilon^{2}\right)^{2}-\nu_{0}^{2}\left(\nu^{2}-\varepsilon^{2}\right)-\alpha \nu\left(\nu_{0}^{2}-\nu^{2}-\varepsilon^{2}\right)\right]\right. \\
&\left.+\frac{\lambda_{\varepsilon}}{\pi_{\varepsilon}} \varepsilon\left(\nu \nu_{0}^{2}+\frac{\alpha}{2}\left(\nu_{0}^{2}+\nu^{2}+\varepsilon^{2}\right)\right)\right] L_{\varepsilon}(\nu) \\
&+\frac{\mathscr{F}_{0}}{\Delta_{0}}\left[c \nu \varepsilon\left(\nu \nu_{0}^{2}+\frac{\alpha}{2}\left(\nu_{0}^{2}+\nu^{2}+\varepsilon^{2}\right)\right)\right. \\
&\left.+\frac{\lambda_{\varepsilon}}{\pi_{\varepsilon}}\left[\nu_{0}^{2}\left(\nu^{2}-\varepsilon^{2}\right)-\left(\nu^{2}+\varepsilon^{2}\right)^{2}+\alpha \nu\left(\nu_{0}^{2}-\nu^{2}-\varepsilon^{2}\right)\right]\right] T_{\varepsilon}(\nu) \tag{2.17}
\end{align*}
$$

where

$$
\begin{aligned}
& \Delta_{0}=\left[\left(\nu_{0}+\nu\right)^{2}+\varepsilon^{2}\right]\left[\left(\nu_{0}-\nu\right)^{2}+\varepsilon^{2}\right] \\
& L_{\varepsilon}(\nu)=\ln \left(\frac{(1-\nu)^{2}+\varepsilon^{2}}{\nu^{2}+\varepsilon^{2}}\right) \\
& T_{\varepsilon}(\nu)=\tan ^{-1}\left(\frac{\nu}{\varepsilon}\right)+\tan ^{-1}\left(\frac{1-\nu}{\varepsilon}\right)
\end{aligned}
$$

and

$$
\begin{align*}
\mathrm{III}_{\varepsilon}^{(0)}\left(\nu_{i}, \nu_{j}\right)= & \mathscr{F}_{j}\left(\frac{c \nu_{i}}{2}\left(\nu_{0}+\nu_{i}\right)+\frac{\lambda_{\varepsilon}}{\pi_{\varepsilon}} \varepsilon\right) \frac{\nu_{0}\left(\nu_{0}-\alpha\right)}{\left(\nu_{0}+\nu_{j}\right)\left[\left(\nu_{0}+\nu_{i}\right)^{2}+\varepsilon^{2}\right]} \ln \left(\frac{\nu_{0}+1}{\nu_{0}}\right) \\
& +\mathscr{F}_{j}\left(\frac{c \nu_{i}}{2}\left(\nu_{j}-\nu_{i}\right)-\frac{\lambda_{\varepsilon}}{\pi_{\varepsilon}} \varepsilon\right) \frac{\nu_{j}\left(\alpha+\nu_{j}\right)}{\left(\nu_{0}+\nu_{j}\right)\left[\left(\nu_{i}-\nu_{j}\right)^{2}+\varepsilon^{2}\right]} \ln \left(\frac{1-\nu_{j}}{\nu_{j}}\right) \\
& +\frac{\mathscr{F}}{\Delta_{i j}}\left(\frac { c \nu _ { i } } { 4 } \left[\left(\nu_{i}^{2}+\varepsilon^{2}\right)^{2}-\nu_{0} \nu_{j}\left(\nu_{i}^{2}-\varepsilon^{2}\right)\right.\right. \\
& \left.-\alpha \nu_{i}\left(\nu_{0} \nu_{j}-\nu_{i}^{2}-\varepsilon^{2}\right)-\left(\nu_{j}-\nu_{0}\right)\left(\nu_{i}^{2}+\varepsilon^{2}\right)\left(\alpha+\nu_{i}\right)\right] \\
& \left.+\frac{\lambda_{\varepsilon}}{\pi_{\varepsilon}} \varepsilon\left[\nu_{0} \nu_{i} \nu_{j}+\frac{1}{2} \alpha\left(\nu_{i}^{2}+\nu_{0} \nu_{j}+\varepsilon^{2}\right)+\frac{1}{2}\left(\nu_{j}-\nu_{0}\right)\left(\nu_{i}^{2}+\varepsilon^{2}\right)\right]\right) L_{\varepsilon}\left(\nu_{i}\right) \\
& +\frac{\mathscr{F}}{\Delta_{j}}\left(c \nu_{i} \varepsilon\left[\nu_{0} \nu_{i} \nu_{j}+\frac{1}{2} \alpha\left(\nu_{i}^{2}+\nu_{0} \nu_{j}+\varepsilon^{2}\right)+\frac{1}{2}\left(\nu_{j}-\nu_{0}\right)\left(\nu_{i}^{2}+\varepsilon^{2}\right)\right]\right. \\
& +\frac{\lambda_{\varepsilon}}{\pi_{\varepsilon}}\left[-\left(\nu_{i}^{2}+\varepsilon^{2}\right)^{2}+\nu_{0} \nu_{j}\left(\nu_{i}^{2}-\varepsilon^{2}\right)+\alpha \nu_{i}\left(\nu_{0} \nu_{j}-\nu_{i}^{2}-\varepsilon^{2}\right)\right. \\
& \left.\left.+\left(\alpha+\nu_{i}\right)\left(\nu_{j}-\nu_{0}\right)\left(\nu_{i}^{2}+\varepsilon^{2}\right)\right]\right) T_{\varepsilon}\left(\nu_{i}\right) \\
& +\mathscr{F} \lambda\left(\nu_{j}\right) \frac{\nu_{j}\left(\alpha+\nu_{j}\right)}{\left(\nu_{0}+\nu_{j}\right)\left[\left(\nu_{i}-\nu_{j}\right)^{2}+\varepsilon^{2}\right]}\left(\frac{c \nu_{i}}{2}\left(\nu_{i}-\nu_{j}\right)+\frac{\lambda_{\varepsilon}}{\pi_{\varepsilon}} \varepsilon\right) \tag{2.18}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathscr{F}=c / 2 \Omega^{(0)}(1-c) \quad \mathscr{F}_{j}=c^{2} \nu_{j} / 4 \Omega^{(0)}(1-c) \\
& \Delta_{i j}=\left[\left(\nu_{0}+\nu_{i}\right)^{2}+\varepsilon^{2}\right]\left[\left(\nu_{i}-\nu_{j}\right)^{2}+\varepsilon^{2}\right] .
\end{aligned}
$$

Figure 1 shows the Poisson and conjugate Poisson kernels for some ε values, while figures 2 and 3 plot the $\Delta \sigma_{1}$ and $\Delta \sigma_{2}$ approximations of $\phi(\nu, \mu)$. Here and in the following the discretised spectrum is ordered according to $\nu_{0}>\nu_{1}>\nu_{2}>\cdots>\nu_{N}$.

Figure 1. (a) The Poisson kernel $\delta_{\varepsilon}(x)$. (b) The conjugate Poisson kernel $P_{\varepsilon}(x)$. The maximum and minimum values of $P_{\varepsilon}(x)$ are ± 50 for $\varepsilon= \pm 0.01$.

Figure 2. $\Delta \sigma_{1}$ approximation of the singular eigenfunction, for $\varepsilon=1 / \pi$ and values of: $c=0.1, \nu_{1}=0.668 ; \times c=0.5, \nu_{1}=0.675 ; \quad c=0.9, \nu_{1}=0.691$.

Figure 3. $\Delta \sigma_{2}$ approximations of the singular eigenfunction, for $\varepsilon=1 / 2 \pi$ and values of: $\odot c=0.1, \nu_{1}=0.845, \nu_{2}=0.356 ; \times c=0.5, \nu_{1}=0.848, \nu_{2}=0.362 ; \quad c=0.9, \nu_{1}=0.854$, $\nu_{2}=0.377$.

3. Sample numerical result

As it is not the purpose of the present paper to report on the details of the numerical adaption of the theory above, this section contains a sample illustration of the $\Delta \sigma_{1}$ and $\Delta \sigma_{2}$ calculations for the emergent angular distribution and leakage of the standard Milne problem, using the collocation method for the residual. These results are therefore not intended to be definitive, and details of the Galerkin calculations will be reported separately. For this problem, the $\Delta \sigma_{N}$ approximation takes the form
$\psi_{N}(x, \mu)=a_{\varepsilon}\left(\nu_{0}\right) \mathrm{e}^{-x / \nu_{0}} \phi\left(\nu_{0}, \mu\right)+\mathrm{e}^{x / \nu_{0}} \phi\left(-\nu_{0}, \mu\right)+\sum_{i=1}^{N} a_{\varepsilon}\left(\nu_{i}\right) \mathrm{e}^{-x / \nu_{1}} \phi_{\varepsilon}\left(\nu_{i}, \mu\right)$
where the coefficients $\left\{a_{\varepsilon}\left(\nu_{i}\right)\right\}_{0}^{N}$ are obtained from the equation
$-\phi\left(-\nu_{0}, \mu_{j}\right)=a_{\varepsilon}\left(\nu_{0}\right) \phi\left(\nu_{0}, \mu_{j}\right)+\sum_{i=1}^{N} a_{\varepsilon}\left(\nu_{i}\right) \phi_{\varepsilon}\left(\nu_{i}, \mu_{j}\right) \quad j=1,2, \ldots, N+1$
where $C_{N}\left(\nu_{i}\right)=0$ and $C_{N+1}\left(\mu_{j}\right)=0$. Then the emergent distribution is

$$
\frac{2}{c} \psi_{N}(0,-\mu)=a_{\varepsilon}\left(\nu_{0}\right) \frac{\nu_{0}}{\nu_{0}+\mu}+\frac{\nu_{0}}{\nu_{0}-\mu}+\sum_{i}^{N} a_{\varepsilon}\left(\nu_{i}\right) \frac{\nu_{i}}{\nu_{i}+\mu} \quad \mu>0
$$

and the expression for leakage takes the form

$$
\begin{gathered}
\frac{2}{c} J_{N}=-a_{\varepsilon}\left(\nu_{0}\right) \nu_{0}\left[1-\nu_{0} \ln \left(\frac{\nu_{0}+1}{\nu_{0}}\right)\right]+\nu_{0}\left[1-\nu_{0} \ln \left(\frac{\nu_{0}}{\nu_{0}-1}\right)\right] \\
-\sum_{1}^{N} a_{\varepsilon}\left(\nu_{i}\right) \nu_{i}\left[1-\nu_{i} \ln \left(\frac{\nu_{i}+1}{\nu_{i}}\right)\right] .
\end{gathered}
$$

Table 3. Zeros of the polynomials $C_{N}(\mu), N=1(1) 5$.

c	$N=1$	$N=2$	$N=3$	$N=4$	$N=5$
0.1	0.66787700	0.35609981	0.21298867	0.14015806	0.09879005
		0.84538645	0.59124224	0.41705327	0.30504509
			0.91160837	0.72359106	0.56251754
				0.94299913	0.80226118
					0.96025082
0.2	0.66924524	0.37730260	0.21373753	0.14061996	0.09908644
		0.84588039	0.59204905	0.41779014	0.30563081
			0.91183009	0.72408358	0.56307867
				0.94311585	0.80257237
					0.96031939
0.3	0.67081050	0.35870012	0.21461475	0.14116334	0.09943594
		0.84644494	0.59297871	0.41864474	0.30631338
			0.91208359	0.72464948	0.56372645
				0.94324936	0.80292949
					0.96039784
0.4	0.67261946	0.36033766	0.21564998	0.14180694	0.09985070
		0.84709747	0.59406066	0.41964469	0.30711521
			0.91237684	0.72530676	0.56448167
				0.94340390	0.80334397
					0.96048870
0.5	0.67473659	0.36227312	0.21687933	0.14257289	0.10034476
		0.84786245	0.59533456	0.42082574	0.30806436
			0.91272114	0.72608026	0.56537217
				0.94358552	0.80383180
					0.96059555
0.6	0.67726761	0.36459937	0.21835971	0.14349554	0.10093974
		0.84878006	0.59686491	0.42224534	0.30920540
			0.91313504	0.72701057	0.56644314
				0.94380417	0.80441913
					0.96072431
0.7	0.68040312	0.36748308	0.22019252	0.14483589	0.10167387
		0.84992276	0.59876780	0.42400655	0.31061801
			0.91365207	0.72817084	0.56777579
				0.94407781	0.80515321
					0.96088566
0.8	0.68453632	0.37126609	0.22258447	0.14611761	0.10262446
		0.85144060	0.60128256	0.42632075	0.31246492
			0.91434184	0.72971249	0.56953747
				0.94444385	0.80613204
					0.96110186
0.9	0.69073859	0.37687017	0.22608794	0.14826928	0.10399601
		0.85374528	0.60506032	0.42975821	0.31518212
			0.91539617	0.73205000	0.57218295
				0.94500561	0.80762507
					0.96143456

Table 4. Values of the asymptotic coefficient in the source-free Milne problem.

c	$N=1, \varepsilon=0.3183$	$N=2, \varepsilon=0.1592$	Exact
0.2	0.0705	0.0199	-0.0004
0.4	0.0254	-0.0044	-0.0273
0.6	-0.0240	-0.0638	-0.1149
0.8	-0.1517	-0.2280	-0.2827
0.9	-0.3065	-0.3914	-0.4362

Table 5. Emergent angular distribution in the source-free Milne problem.

$-\mu$	$c=0.2$			$c=0.4$		
	$N=1$	$N=2$	Exact	$N=1$	$N=2$	Exact
1.0	1100.37	1100.37	1098.62	13.8992	13.8990	13.8823
0.8	0.4987	0.4972	0.4965	0.9310	0.9310	0.9324
0.6	0.2486	0.2468	0.2466	0.4725	0.4723	0.4750
0.4	0.1648	0.1628	0.1628	0.3099	0.3095	0.3133
0.2	0.1224	0.1199	0.1202	0.2239	0.2230	0.2281
0.0	0.0961	0.0925	0.0926	0.1669	0.1638	0.1686
	$c=0.6$			$c=0.8$		
- μ	$N=1$	$N=2$	Exact	$N=1$	$N=2$	Exact
1.0	3.2032	3.2035	3.2066	1.3033	1.2998	1.3019
0.8	1.0557	1.0560	1.0603	0.8398	0.8362	0.8393
0.6	0.6139	0.6143	0.6197	0.5989	0.5954	0.5999
0.4	0.4183	0.4185	0.4256	0.4456	0.4420	0.4486
0.2	0.3023	0.3018	0.3113	0.3323	0.3281	0.3378
0.0	0.2176	0.2135	0.2225	0.2349	0.2268	0.2359

Table 6. Leakage in the source-free Milne problem.

	$c=0.2$	$c=0.4$	$c=0.6$	$c=0.8$
$N=1$	0.8301	0.6621	0.5142	0.3709
$\mathrm{~N}=2$	0.8292	0.6619	0.5143	0.3690
Exact	0.8280	0.6627	0.5170	0.3713

Tables 4-6 show the results for $N=1,2$. Table 4 compares $a_{\varepsilon}\left(\nu_{0}\right)$ with the exact $a\left(\nu_{0}\right)=-\exp \left(-2 z_{0} / \nu_{0}\right)$ and shows that $a_{1 / 2 \pi}\left(\nu_{0}\right)$ is more accurate than $a_{1 / \pi}\left(\nu_{0}\right)$ in all the cases.

4. Discussion

In this paper, we have shown how the singular eigenfunction method can be formulated in terms of regular functions which tend, as a parameter ε in them approaches 0 , to
the singular functions. This is achieved by approximating the singular eigenfunctions by a rational function rather than by the usual polynomial series. Discretisation of the continuous spectrum $(0,1)$ is done through the zeros of the polynomials orthogonal in $(0,1)$ WRT the weight $W^{(0)}(\mu)$ [6]. It has been our experience that attempts to improve upon this simple one-parameter weight through more adjustable parameters are largely unsuccessful in the whole μ interval. However, the zeros of $C_{N}(\mu)$ are the approximate Gaussian nodes for the half-range problem and therefore enjoy a special status as compared to, for example, equally spaced points which are not Gaussian for any weight.

In our opinion, a more basic definition of ε than (2.15) is necessary. For example, an arbitrary smaller ε for a given N can lead to worsening of the numerical results. This is supports our hypothesis that ε should be N dependent, and a definition using the concept of equivalent Cauchy sequences for the delta function is given in the appendix. Use of this definition in a Galerkin treatment of the residual is the subject of a separate publication [9].

Appendix. A fundamental definition of ε

The definition of ε contained in this appendix is based on the idea of equivalent Cauchy sequences in a metric space. We recall that (i) two Cauchy sequences $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ in a metric space (X, d) are said to be equivalent if $d\left(x_{k}, y_{k}\right) \rightarrow 0, k \rightarrow \infty$, and (ii) an equivalence class \mathscr{X} consists of all Cauchy sequences equivalent to a given Cauchy sequence $\left\{x_{k}\right\}$. In this context, a distribution or generalised function can be defined as the common limit \mathscr{X} of an equivalence class of locally integrable functions (i.e. it is an element of the completion of the space of locally integrable functions) with convergence defined WRT the metric

$$
d\left(x_{i}, x_{j}\right)=\int_{I}\left(x_{i}(t)-x_{j}(t)\right) \varphi(t) \mathrm{d} t \quad \varphi(t) \in C_{0}^{\infty}(I)
$$

In this new definition of ε, we consider the first two among the following examples of equivalent delta convergent Cauchy sequences:

$$
\begin{align*}
& \delta_{N}^{(1)}(t)=\left\{\begin{array}{ll}
N & -1 / 2 N \leqslant t \leqslant 1 / 2 N \\
0 & \text { otherwise }
\end{array} \quad N=0,1,2, \ldots\right. \tag{A1}\\
& \delta_{\varepsilon}^{(2)}(t)=\varepsilon / \pi\left(t^{2}+\varepsilon^{2}\right) \quad \varepsilon \rightarrow 0 \tag{A2}\\
& \delta_{n}^{(3)}(t)=\sin (n t) / \pi t \quad n \rightarrow \infty \tag{A3}\\
& \delta_{\varepsilon}^{(4)}(t)=\exp \left(-t^{2} / \varepsilon\right) /(\pi \varepsilon)^{1 / 2} \quad \varepsilon \rightarrow 0 \tag{A4}\\
& \delta_{n}^{(5)}(t)=n \exp (-n \mid t) / 2 \quad \quad n \rightarrow \infty \tag{A5}
\end{align*}
$$

and note that (A1) and (A2) are normalised to unity in the intervals ($-1 / 2 N, 1 / 2 N$) and $(-\infty, \infty)$ respectively. In terms of these, $\phi(\nu, \mu),-1 \leqslant \nu \leqslant 1$, has the following equivalent representations:

$$
\begin{equation*}
\phi_{N}(\nu, \mu)=\frac{c \nu}{2} \frac{\nu-\mu}{(\nu-\mu)^{2}+\varepsilon^{2}}+\lambda_{\epsilon}(\nu) N \quad \nu \pm 1 / 2 N \leftrightarrows \pm 1 ; N=1,2,3, \ldots \tag{A6}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{\varepsilon}(\nu, \mu)=\frac{c \nu}{2} \frac{\nu-\mu}{(\nu-\mu)^{2}+\varepsilon^{2}}+\frac{\lambda_{\varepsilon}}{\pi_{\varepsilon}} \frac{\varepsilon}{(\nu-\mu)^{2}+\varepsilon^{2}} . \tag{A7}
\end{equation*}
$$

If ν and N in (A6) do not satisfy the restrictions shown there, N is to be replaced by N^{*} such that normalisation again holds and in this case, one has

$$
\phi_{N^{*}}(\nu, \mu)=\frac{c \nu}{2} \frac{\nu-\mu}{(\nu-\mu)^{2}+\varepsilon^{2}}+\lambda_{\varepsilon}(\nu) N^{*}
$$

where N^{*} is given by

$$
N^{*}(\nu)= \begin{cases}(1+\nu+1 / 2 N)^{-1} & \nu \mp 1 / 2 N<\neq 1 \tag{A8}\\ (1-\nu+1 / 2 N)^{-1} & \nu \pm 1 / 2 N> \pm 1\end{cases}
$$

such that

$$
\int_{-1}^{\nu+1 / 2 N} \delta_{N^{*}}^{(1)}(\nu-\mu) \mathrm{d} \mu=1 \quad \int_{\nu-1 / 2 N}^{1} \delta_{N^{*}}^{(1)}(\nu-\mu) \mathrm{d} \mu=1 .
$$

With the ν discretised at the zeros of C_{N}, only case (A9) can arise for $\nu=\nu_{1}$; for all other $\nu=\nu_{2}, \nu_{3}, \ldots, \nu_{N}, N^{*}=N$. The definition of ε is now obtained by setting

$$
\phi_{\varepsilon}(\nu, \nu)=\phi_{N^{*}}(\nu, \nu)
$$

This gives the fundamental $\varepsilon-N$ relationship to be

$$
\begin{equation*}
\varepsilon(N, \nu)=\left(N^{*} \pi_{\varepsilon}\right)^{-1} \tag{A10}
\end{equation*}
$$

where

$$
\pi_{\varepsilon}=\tan ^{-1}\left(\frac{1+\nu}{\varepsilon}\right)+\tan ^{-1}\left(\frac{1-\nu}{\varepsilon}\right)
$$

so as to normalise (A2) in ($-1,1$). Expression (2.15) used in the main text, is an approximation of (A10) when both (A1) and (A2) are normalised in $(-\infty, \infty)$ instead of $(-1,1)$. An effective iteration scheme for (A10) is: $\varepsilon_{i+1}=\left(N^{*} \pi_{\varepsilon_{i}}\right)^{-1}, \varepsilon_{0}=\left(N^{*} \pi\right)^{-1}$. We remark that the reason why point equivalence rather than distributional equivalence of ϕ_{ε} and $\phi_{N^{*}}$ has been employed in the derivation of (A10) is that in the later use the distinctive character of the Poisson kernel would be largely lost in favour of the representation (A1).

References

[1] Case K M and Zweifel P F 1967 Linear Transport Theory (Reading, MA: Addison-Wesley)
[2] Grandjean P and Siewert C E 1979 Nucl. Sci. Eng. 69161
Garcia R D and Siewert C E 1981 J. Quant. Spectrosc. Radiat. Transfer 25277
[3] Ganguly K and Sengupta A 1980 Nucl. Sci. Eng. 74 1; 1981 Nucl. Sci. Eng. 7713
[4] Sengupta A 1982 J. Phys. A: Math. Gen. 15 L487
[5] Sengupta A 1984 J. Phys. A: Math. Gen. 172743
[6] Sengupta A 1986 J. Phys. A: Math. Gen. 19 L1
[7] Korevaar J 1968 Mathematical Methods vol 1 (New York: Academic)
[8] Kuscer I, McCormick N J and Summerfield G C 1964 Ann. Phys., NY 30411
[9] Sengupta A and Venugopal R 1988 J. Stat. Phys. 51 to be published

